首页> 外文OA文献 >Preserving Privacy in Sequential Data Release against Background Knowledge Attacks
【2h】

Preserving Privacy in Sequential Data Release against Background Knowledge Attacks

机译:在背景下保持序列数据发布中的隐私   知识攻击

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A large amount of transaction data containing associations betweenindividuals and sensitive information flows everyday into data stores. Examplesinclude web queries, credit card transactions, medical exam records, transitdatabase records. The serial release of these data to partner institutions ordata analysis centers is a common situation. In this paper we show that, inmost domains, correlations among sensitive values associated to the sameindividuals in different releases can be easily mined, and used to violateusers' privacy by adversaries observing multiple data releases. We provide aformal model for privacy attacks based on this sequential background knowledge,as well as on background knowledge on the probability distribution of sensitivevalues over different individuals. We show how sequential background knowledgecan be actually obtained by an adversary, and used to identify with highconfidence the sensitive values associated with an individual. A defensealgorithm based on Jensen-Shannon divergence is proposed, and extensiveexperiments show the superiority of the proposed technique with respect toother applicable solutions. To the best of our knowledge, this is the firstwork that systematically investigates the role of sequential backgroundknowledge in serial release of transaction data.
机译:包含个人和敏感信息之间的关联的大量交易数据每天都会流入数据存储区。示例包括Web查询,信用卡交易,体检记录,运输数据库记录。将这些数据串行发布给合作伙伴机构或数据分析中心是一种常见情况。在本文中,我们表明,在大多数域中,可以轻松地挖掘与不同发布中的同一个人相关联的敏感值之间的相关性,并通过观察多个数据发布的对手来侵犯用户的隐私。我们基于此连续的背景知识以及有关敏感值在不同个人之间的概率分布的背景知识,为隐私攻击提供了一个正式模型。我们展示了对手实际上是如何获得顺序背景知识的,并可以高度自信地识别与个人相关的敏感值。提出了一种基于詹森-香农(Jensen-Shannon)散度的防御算法,广泛的实验表明所提出的技术相对于其他适用解决方案具有优越性。据我们所知,这是系统地研究顺序背景知识在交易数据串行发布中的作用的第一项工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号